Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolomics ; 15(10): 131, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31576432

RESUMO

INTRODUCTION: Shiga toxin 2a (Stx2a) induces hemolytic uremic syndrome (STEC HUS) by targeting glomerular endothelial cells (GEC). OBJECTIVES: We investigated in a metabolomic analysis the response of a conditionally immortalized, stable glomerular endothelial cell line (ciGEnC) to Stx2a stimulation as a cell culture model for STEC HUS. METHODS: CiGEnC were treated with tumor necrosis factor-(TNF)α, Stx2a or sequentially with TNFα and Stx2a. We performed a metabolomic high-throughput screening by lipid- or gas chromatography and subsequent mass spectrometry. Metabolite fold changes in stimulated ciGEnC compared to untreated cells were calculated. RESULTS: 320 metabolites were identified and investigated. In response to TNFα + Stx2a, there was a predominant increase in intracellular free fatty acids and amino acids. Furthermore, lipid- and protein derived pro-inflammatory mediators, oxidative stress and an augmented intracellular energy turnover were increased in ciGEnC. Levels of most biochemicals related to carbohydrate metabolism remained unchanged. CONCLUSION: Stimulation of ciGEnC with TNFα + Stx2a is associated with profound metabolic changes indicative of increased inflammation, oxidative stress and energy turnover.


Assuntos
Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Glomérulos Renais/citologia , Metabolômica , Toxina Shiga II/farmacologia , Contagem de Células , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/citologia , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos , Análise Multivariada , Toxina Shiga II/metabolismo
2.
J Inflamm (Lond) ; 15: 10, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29796010

RESUMO

BACKGROUND: Endothelial progenitor cell (EPC) numbers are increased in septic patients and correlate with survival. In this study, we investigated, whether surface expression of chemokine receptors and other receptors important for EPC homing is upregulated by EPC from septic patients and if this is associated with clinical outcome. METHODS: Peripheral blood mononuclear cells from septic patients (n = 30), ICU control patients (n = 11) and healthy volunteers (n = 15) were isolated by Ficoll density gradient centrifugation. FACS-analysis was used to measure the expression of the CXC motif chemokine receptors (CXCR)-2 and - 4, the receptor for advanced glycation endproducts (RAGE) and the stem cell factor receptor c-Kit. Disease severity was assessed via the Simplified Acute Physiology Score (SAPS) II. The serum concentrations of vascular endothelial growth factor (VEGF), stromal cell-derived factor (SDF)-1α and angiopoietin (Ang)-2 were determined with Enzyme linked Immunosorbent Assays. RESULTS: EPC from septic patients expressed significantly more CXCR-4, c-Kit and RAGE compared to controls and were associated with survival-probability. Significantly higher serum concentrations of VEGF, SDF-1α and Ang-2 were found in septic patients. SDF-1α showed a significant association with survival. CONCLUSIONS: Our data suggest that SDF-1α and CXCR-4 signaling could play a crucial role in EPC homing in the course of sepsis.

3.
Am J Physiol Renal Physiol ; 315(4): F861-F869, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29513070

RESUMO

Endothelial injury with consecutive microangiopathy and endothelial dysfunction plays a central role in the pathogenesis of the postenteropathic hemolytic uremic syndrome (D + HUS). To identify new treatment strategies, we examined the regenerative potential of endothelial progenitor cells (EPCs) in an in vitro model of Shiga toxin (Stx) 2a-induced glomerular endothelial injury present in D + HUS and the mechanisms of EPC-triggered endothelial regeneration. We simulated the proinflammatory milieu present in D + HUS by priming human renal glomerular endothelial cells (HRGECs) with tumor necrosis factor-α before stimulation with Stx2a. This measure led to a time- and concentration-dependent decrease of HRGEC viability of human renal glomerular endothelial cells as detected by a colorimetric assay. Coincubation with EPCs (104-105 cells/ml) under dynamic flow conditions led to a significant improvement of cell viability in comparison to untreated monolayers (0.45 ± 0.06 vs. 0.16 ± 0.04, P = 0.003). A comparable regenerative effect of EPCs was observed in a coculture model using cell culture inserts (0.41 ± 0.05 vs. 0.16 ± 0.04, P = 0.003) associated with increased concentrations of vascular endothelial growth factor, insulin-like growth factor I, fibroblast growth factor-2, and hepatocyte growth factor in the supernatant. Treatment of Stx2a-injured monolayers with a combination of these growth factors imitated this effect. EPCs did not show distinct sings of migration and angiogenic tube formation in functional assays. These data demonstrate that EPCs significantly improve endothelial viability after Stx2a-induced injury in vitro and that this effect is associated with the release of growth factors by EPCs.


Assuntos
Células Progenitoras Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Progenitoras Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Humanos , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Toxina Shiga II/farmacologia , Células-Tronco/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos
4.
PLoS One ; 13(3): e0195064, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29601599

RESUMO

CD34+/CD133+- cells are a bone marrow derived stem cell population, which presumably contain vascular progenitor cells and are associated with improved vascular repair. In this study, we investigated whether the adhesion molecules ICAM-1 (intercellular adhesion molecule-1), VCAM-1 (vascular adhesion molecule-1), E-selectin und L-selectin, which are involved in homing of vascular stem cells, are upregulated by CD34+/CD133+-stem cells from septic patients and would be associated with improved clinical outcome. Peripheral blood mononuclear cells from intensive care unit (ICU) patients with (n = 30) and without sepsis (n = 10), and healthy volunteers (n = 15) were isolated using Ficoll density gradient centrifugation. The expression of VCAM-1, ICAM-1, E-selectin and L-selectin was detected on CD34+/CD133+-stem cells by flow cytometry. The severity of disease was assessed by the Simplified Acute Physiology Score (SAPS) II. Serum concentrations of vascular endothelial growth factor (VEGF) and angiopoietin (Ang)-2 were determined by Enzyme-linked immunosorbent assay. The expression of VCAM-1, ICAM-1, E-selectin and L-selectin by CD34+/CD133+-stem cells was significantly upregulated in septic patients, and correlated with sepsis severity. Furthermore, high expression of VCAM-1 by CD34+/CD133+-stem cells revealed a positive association with mortalitiy (p<0.05). Furthermore, significantly higher serum concentrations of VEGF and Ang-2 were found in septic patients, however none showed a strong association with survival. Our data suggest, that VCAM-1 upregulation on CD34+/CD133+-stem cells could play a crucial role in their homing in the course of sepsis. An increase in sepsis severity resulted in both and increase in CD34+/CD133+-stem cells and VCAM-1-expression by those cells, which might reflect an increase in need for vascular repair.


Assuntos
Antígeno AC133/metabolismo , Antígenos CD34/metabolismo , Sepse/metabolismo , Sepse/patologia , Células-Tronco/metabolismo , Regulação para Cima , Molécula 1 de Adesão de Célula Vascular/metabolismo , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sepse/sangue , Análise de Sobrevida , Fator A de Crescimento do Endotélio Vascular/sangue , Proteínas de Transporte Vesicular/sangue
5.
Sci Rep ; 6: 35794, 2016 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-27786189

RESUMO

The CRISPR/Cas9 system is a recently developed genome editing technique. In this study, we used a modified CRISPR system, which employs the fusion of inactive Cas9 (dCas9) and the FokI endonuclease (FokI-dCas9) to correct the most common variant (allele frequency 21.4%) in the phenylalanine hydroxylase (PAH) gene - c.1222C>T (p.Arg408Trp) - as an approach toward curing phenylketonuria (PKU). PKU is the most common inherited diseases in amino acid metabolism. It leads to severe neurological and neuropsychological symptoms if untreated or late diagnosed. Correction of the disease-causing variants could rescue residual PAH activity and restore normal function. Co-expression of a single guide RNA plasmid, a FokI-dCas9-zsGreen1 plasmid, and the presence of a single-stranded oligodeoxynucleotide in PAH_c.1222C>T COS-7 cells - an in vitro model for PKU - corrected the PAH variant and restored PAH activity. Also in this system, the HDR enhancer RS-1 improved correction efficiency. This proof-of-concept indicates the potential of the FokI-dCas9 system for precision medicine, in particular for targeting PKU and other monogenic metabolic diseases.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Terapia Genética/métodos , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/etiologia , Animais , Células COS , Chlorocebus aethiops , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Elementos Facilitadores Genéticos , Humanos , Mutação , Fenilalanina Hidroxilase/metabolismo , Fenilcetonúrias/genética , Plasmídeos
6.
J Infect Dis ; 213(6): 1031-40, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26582960

RESUMO

BACKGROUND: Endothelial dysfunction plays a pivotal role in the pathogenesis of postenteropathic hemolytic uremic syndrome (HUS), most commonly caused by Shiga toxin (Stx)-producing strains of Escherichia coli. METHODS: To identify new treatment targets, we performed a metabolomic high-throughput screening to analyze the effect of Stx2a, the major Stx type associated with HUS, on human renal glomerular endothelial cells (HRGEC) and umbilical vein endothelial cells (HUVEC). Cells were treated either with sensitizing tumor necrosis factor α (TNF-α) or Stx2a, a sequence of both or remained untreated. RESULTS: We identified 341 metabolites by combined liquid chromatography/tandem mass spectrometry and gas chromatography/mass spectrometry. Both cell lines exhibited distinct metabolic reaction profiles but shared elevated levels of free fatty acids. Stx2a predominantly altered the nicotinamide adenine dinucleotide (NAD) cofactor pathway and the inflammation-modulating eicosanoid pathway, which are associated with lipid metabolism. In HRGEC, Stx2a strongly diminished NAD derivatives, leading to depletion of the energy substrate acetyl coenzyme A and the antioxidant glutathione. HUVEC responded to TNF-α and Stx2a by increasing production of the counteracting eicosanoids prostaglandin I2, E1, E2, and A2, while in HRGEC only more prostaglandin I2 was detected. CONCLUSIONS: We conclude that disruption of energy metabolism and depletion of glutathione contributes to Stx-induced injury of the renal endothelium and that the inflammatory response to Stx is highly cell-type specific.


Assuntos
Células Endoteliais/efeitos dos fármacos , Escherichia coli/metabolismo , Síndrome Hemolítico-Urêmica/microbiologia , Glomérulos Renais/citologia , Metabolômica , Toxina Shiga II/toxicidade , Células Cultivadas , Eicosanoides/genética , Eicosanoides/metabolismo , Escherichia coli/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Síndrome Hemolítico-Urêmica/metabolismo , Síndrome Hemolítico-Urêmica/patologia , Humanos
7.
Proteomics Clin Appl ; 9(3-4): 342-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25594918

RESUMO

After the establishment of DNA/RNA sequencing as a means of clinical diagnosis, the analysis of the proteome is next in line. As a matter of fact, proteome-based diagnostics is bound to be even more informative, since proteins are directly involved in the actual cellular processes that are responsible for disease. However, the structural variation and the biochemical differences between proteins, the much wider range in concentration and their spatial distribution as well as the fact that protein activity frequently relies on interaction increase the methodological complexity enormously, particularly if an accuracy and robustness is required that is sufficient for clinical utility. Here, we discuss the contribution that protein microarray formats could play towards proteome-based diagnostics.


Assuntos
Proteômica/métodos , Humanos , Análise Serial de Proteínas/métodos
8.
BMC Res Notes ; 7: 613, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25196505

RESUMO

BACKGROUND: Acute respiratory distress syndrome (ARDS) is the most common cause of respiratory failure among critically ill patients. Novel treatment strategies are required to address this common clinical problem. The application of exogenous adult stem cells was associated with a beneficial outcome in various pre-clinical models of ARDS. In the present study we evaluated the functional capacity and homing ability of bone marrow-derived progenitor cells (BMDPC) in vitro and investigated their potential as a treatment strategy in lipopolysaccharide (LPS)-induced ARDS. RESULTS: Evaluation of the BMDPC showed functional capacity to form endothelial outgrowth cell colonies, which stained positive for CD133 and CD31. Furthermore, DiI-stained BMDPC were demonstrated to home to injured lung tissue. Rats treated with BMDPC showed significantly reduced histopathological changes, a reduced expression of ICAM-1 and VCAM-1 by the lung tissue, an inhibition of proinflammatory cytokine synthesis, a reduced weight loss and a reduced mortality (p < 0.03) compared to rats treated with LPS alone. CONCLUSIONS: These findings suggest that the application of exogenous BMDPC can attenuate inflammation in LPS-induced ARDS and thereby reduce the severity of septic organ damage. Cell therapy strategies using adult stem cells might therefore become a novel and alternative option in ARDS therapy.


Assuntos
Células-Tronco Hematopoéticas/patologia , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Síndrome do Desconforto Respiratório/prevenção & controle , Animais , Ensaio de Imunoadsorção Enzimática , Ratos , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/patologia
9.
Expert Rev Proteomics ; 11(1): 107-20, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24393018

RESUMO

Genome sequencing has led to the identification of many proteins, which had not been recognized before. In consequence, the basic set of human proteins is generally known. Far less information, however, exists about protein-protein interactions, which are required and responsible for cellular activities and their control. Many protein isoforms that result from mutations, splice-variations and post-translational modifications also come into play. Until recently, interactions of only few protein partners could be analyzed in a single experiment. However, this does not meet the challenge of investigating the highly complex interaction patterns in cellular systems. It is made even more demanding by the need to determine the intensity of interactions quantitatively in order to properly understand protein interplay. Currently available techniques vary with respect to accuracy, reliability, reproducibility and throughput and their performances range from a mere qualitative demonstration of binding to a quantitative characterization of affinities. In this article, an overview is given of the methodologies available for analysis of protein-protein interactions.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Proteínas/análise , Proteômica/métodos , Animais , Humanos , Proteínas/isolamento & purificação , Reprodutibilidade dos Testes
10.
Free Radic Biol Med ; 47(8): 1212-20, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19660541

RESUMO

N-methyl-d-aspartate receptor (NMDA-R)-mediated oxidative stress has been implicated in blood-brain barrier (BBB) disruption in a variety of neuropathological diseases. Although some interactions between both phenomena have been elucidated, possible influences of reactive oxygen species (ROS) on the NMDA-R itself have so far been neglected. The objective of this study was to examine how the cerebroendothelial NMDA-R is affected by exposure to oxidative stress and to assess possible influences on BBB integrity. RT-PCR confirmed several NMDA-R subunits (NR1, NR2B-D) expressed in the bEnd3 cell line (murine cerebrovascular endothelial cells). NR1 protein expression after exposure to ROS was observed via in-cell Western. The functionality of the expressed NMDA-R was determined by measuring DiBAC fluorescence in ROS-preexposed cells upon stimulation with the specific agonist NMDA. Finally, the effects on barrier integrity were evaluated using the ECIS system to detect changes in monolayer impedance upon NMDA-R stimulation after exposure to ROS. The expression of NR1 significantly (p<0.001) increased 72 h after 30 min exposure to superoxide (+33.8+/-7.5%), peroxynitrite (+84.9+/-10.7%), or hydrogen peroxide (+92.8+/-7.6%), resulting in increased cellular response to NMDA-R stimulation and diminished monolayer impedance. We conclude that oxidative stress upregulates NMDA-R on cerebrovascular endothelium and thus heightens susceptibility to glutamate-induced BBB disruption.


Assuntos
Endotélio Vascular/metabolismo , Estresse Oxidativo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Apoptose , Barreira Hematoencefálica/metabolismo , Western Blotting , Células Cultivadas , Circulação Cerebrovascular , Endotélio Vascular/citologia , Ácido Glutâmico/farmacologia , Técnicas Imunoenzimáticas , Camundongos , N-Metilaspartato/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...